4.5 Article

Vitamin D Regulates CXCL12/CXCR4 and Epithelial-to-Mesenchymal Transition in a Model of Breast Cancer Metastasis to Lung

Journal

ENDOCRINOLOGY
Volume 162, Issue 7, Pages -

Publisher

ENDOCRINE SOC
DOI: 10.1210/endocr/bqab049

Keywords

vitamin D; breast cancer; metastasis; epithelial to mesenchymal transition; CXCL12

Funding

  1. Canadian Institutes of Health Research [MOP 10839]

Ask authors/readers for more resources

Vitamin D deficiency is associated with poor cancer outcomes and may affect metastasis in breast cancer. Vitamin D may play a role in breast cancer metastasis by regulating processes such as epithelial-to-mesenchymal transition and CXCL12/CXCR4 signaling.
Vitamin D deficiency is associated with poor cancer outcome in humans, and administration of vitamin D or its analogs decreases tumor progression and metastasis in animal models. Using the mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) model of mammary cancer, we previously demonstrated a significant acceleration of carcinogenesis in animals on a low vitamin D diet and a reduction in spontaneous lung metastases when mice received vitamin D through perfusion. We investigate here the action mechanism for vitamin D in lung metastasis in the same non-immunodeficient model and demonstrate that it involves the control of epithelial to mesenchymal transition as well as interactions between chemokine C-X-C motif chemokine 12 (CXCL12) and its receptor C-X-C chemokine receptor type 4 (CXCR4). In vitro, 10(-9)M vitamin D treatment modifies the phenotype of MMTV-PyMT primary mammary tumor cells and significantly decreases their invasiveness and mammosphere formation capacity by 40% and 50%, respectively. Vitamin D treatment also inhibits phospho-signal transducer and activator of transcription 3 (p-STAT3), zinc finger E-box-binding homeobox 1 (Zeb1), and vimentin by 52%, 75%, and 77%, respectively, and increases E-cadherin by 87%. In vivo, dietary vitamin D deficiency maintains high levels of Zeb1 and p-STAT3 in cells from primary mammary tumors and increases CXCL12 expression in lung stroma by 64%. In lung metastases, vitamin D deficiency increases CXCL12/CXCR4 co-localization by a factor of 2.5. These findings indicate an involvement of vitamin D in mammary cancer seed (primary tumor cell) and soil (metastatic site) and link vitamin D deficiency to epithelial-to-mesenchymal transition (EMT), CXCL12/CXCR4 signaling, and accelerated metastasis, suggesting vitamin D repleteness in breast cancer patients could enhance the efficacy of co-administered therapies in preventing spread to distant organs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available