4.4 Article

The fission yeast S-phase cyclin Cig2 can drive mitosis

Journal

GENETICS
Volume 217, Issue 1, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/genetics/iyaa002

Keywords

cell cycle; cyclin-dependent kinase; Schizosaccharomyces pombe

Funding

  1. National Institutes of Health [GM134300]

Ask authors/readers for more resources

This study demonstrates that the commitment to mitosis is regulated by CDK activity. Both Cdc13 and Cig2 cyclins in fission yeast are capable of driving mitosis, supporting the quantitative model of CDK function. This highlights the versatility of cyclins in regulating cell cycle processes.
Commitment to mitosis is regulated by cyclin-dependent kinase (CDK) activity. In the fission yeast Schizosaccharomyces pombe, the major B-type cyclin, Cdc13, is necessary and sufficient to drive mitotic entry. Furthermore, Cdc13 is also sufficient to drive S phase, demonstrating that a single cyclin can regulate alternating rounds of replication and mitosis, and providing the foundation of the quantitative model of CDK function. It has been assumed that Cig2, a B-type cyclin expressed only during S phase and incapable of driving mitosis in wild-type cells, was specialized for S-phase regulation. Here, we show that Cig2 is capable of driving mitosis. Cig2/CDK activity drives mitotic catastrophe-lethal mitosis in inviably small cells-in cells that lack CDK inhibition by tyrosine-phosphorylation. Moreover, Cig2/CDK can drive mitosis in the absence of Cdc13/CDK activity and constitutive expression of Cig2 can rescue loss of Cdc13 activity. These results demonstrate that in fission yeast, not only can the presumptive M-phase cyclin drive S phase, but the presumptive S-phase cyclin can drive M phase, further supporting the quantitative model of CDK function. Furthermore, these results provide an explanation, previously proposed on the basis of computational analyses, for the surprising observation that cells expressing a single-chain Cdc13-Cdc2 CDK do not require Y15 phosphorylation for viability. Their viability is due to the fact that in such cells, which lack Cig2/CDK complexes, Cdc13/CDK activity is unable to drive mitotic catastrophe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available