4.8 Article

Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial

Journal

GUT
Volume 70, Issue 1, Pages 92-105

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/gutjnl-2020-322630

Keywords

-

Funding

  1. AMC MD PhD fellowship grant
  2. EFSD/JDRF/Lilly 2017
  3. Netherlands Organization for Scientific Research (Spinoza Award)
  4. ZONMW--VIDI grant 2013 [016.146.327]

Ask authors/readers for more resources

This study found that fecal microbiota transplantation can help delay disease progression and protect pancreatic function in patients with type 1 diabetes. Certain plasma metabolites and bacterial strains are associated with preserved residual beta cell function. The gut microbiome plays a crucial role in the pathophysiology of T1D.
Objective Type 1 diabetes (T1D) is characterised by islet autoimmunity and beta cell destruction. A gut microbiota-immunological interplay is involved in the pathophysiology of T1D. We studied microbiota-mediated effects on disease progression in patients with type 1 diabetes using faecal microbiota transplantation (FMT). Design Patients with recent-onset (<6 weeks) T1D (18-30 years of age) were randomised into two groups to receive three autologous or allogenic (healthy donor) FMTs over a period of 4 months. Our primary endpoint was preservation of stimulated C peptide release assessed by mixed-meal tests during 12 months. Secondary outcome parameters were changes in glycaemic control, fasting plasma metabolites, T cell autoimmunity, small intestinal gene expression profile and intestinal microbiota composition. Results Stimulated C peptide levels were significantly preserved in the autologous FMT group (n=10 subjects) compared with healthy donor FMT group (n=10 subjects) at 12 months. Small intestinal Prevotella was inversely related to residual beta cell function (r=-0.55, p=0.02), whereas plasma metabolites 1-arachidonoyl-GPC and 1-myristoyl-2-arachidonoyl-GPC levels linearly correlated with residual beta cell preservation (rho=0.56, p=0.01 and rho=0.46, p=0.042, respectively). Finally, baseline CD4 +CXCR3+T cell counts, levels of small intestinal Desulfovibrio piger and CCL22 and CCL5 gene expression in duodenal biopsies predicted preserved beta cell function following FMT irrespective of donor characteristics. Conclusion FMT halts decline in endogenous insulin production in recently diagnosed patients with T1D in 12 months after disease onset. Several microbiota-derived plasma metabolites and bacterial strains were linked to preserved residual beta cell function. This study provides insight into the role of the intestinal gut microbiome in T1D.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available