4.7 Article

Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 17, Issue 7, Pages 2830-2841

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2009.02.026

Keywords

ATP synthase; Diarylquinoline; Protein-ligand docking; Anti-tuberculosis drugs

Ask authors/readers for more resources

We herein describe the synthesis and antimycobacterial activity of a series of 27 different derivatives of 3-benzyl-6-bromo-2-methoxy-quinolines and amides of 2-[(6-bromo-2-methoxy-quinolin-3-yl)-phenyl-methyl]- malonic acid monomethyl ester. The antimycobacterial activity of these compounds was evaluated in vitro against Mycobacterium tuberculosis H37Rv for nine consecutive days upon a fixed concentration (6.25 mu g/mL) at day one in Bactec assay and compared to untreated TB cell culture as well as one with isoniazide treated counterpart, under identical experimental conditions. The compounds 3, 8, 17 and 18 have shown 92-100% growth inhibition of mycobacterial activity, with minimum inhibitory concentration ( MIC) of 6.25 mu g/mL. Based on our molecular modelling and docking studies on well-known diarylquinoline antitubercular drug R207910, the presence of phenyl, naphthyl and halogen moieties seem critical. Comparison of docking studies on different stereoisomers of R207910 as well as compounds from our data set, suggests importance of electrostatic interactions. Further structural analysis of docking studies on our compounds suggests attractive starting point to find new lead compounds with potential improvements. (c) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available