4.6 Article

Spp24 Derivatives Stimulate a Gi-Protein Coupled Receptor-Erk1/2 Signaling Pathway and Modulate Gene Expressions in W-20-17 Cells

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 116, Issue 5, Pages 767-777

Publisher

WILEY
DOI: 10.1002/jcb.25032

Keywords

-

Funding

  1. Department of Veterans Affairs Biomedical Laboratory [1I01BX000511]
  2. Rehabilitation Research and Development Services [1I0RX000383]

Ask authors/readers for more resources

Secreted phosphoprotein 24 kDa (Spp24) is an apatite-and BMP/TGF-beta cytokine-binding phosphoprotein found in serum and many tissues, including bone. N-terminally intact degradation products ranging in size from 14 kDa to 23 kDa have been found in bone. The cleavage sites in Spp24 that produce these short forms have not been definitively identified, and the biological activities and mechanisms of action of Spp24 and its degradation products have not been fully elucidated. We found that the C-terminus of Spp24 is labile to proteolysis by furin, kallikrein, lactoferrin, and trypsin, indicating that both extracellular and intracellular proteolytic events could account for the generation of biologically-active Spp18, Spp16, and Spp14. We determined the effects of these truncation products on kinase-mediated signal transduction, gene expression, and osteoblastic differentiation in W-20-17 bone marrow stromal cells cultured in basal or pro-osteogenic media. After culturing for five days, all forms inhibited BMP-2-stimulated osteoblastic differentiation, assessed as induction of alkaline phosphatase activity, in basal, but not pro-osteogenic media. After 10 days, they also inhibited BMP-2-stimulated mineral deposition in pro-osteogenic media. Spp24 had no effect on Erk1/2 phosphorylation, but Spp18 stimulated short-term Erk1/2, MEK 1/2, and p38 phosphorylation. Pertussis toxin and a MEK1/2 inhibitor ablated Spp18-stimulated Erk 1/2 phosphorylation, indicating a role for G(i) proteins and MEK1/2 in the Spp18-stimulated Erk1/2 phosphorylation cascade. Truncation products, but not full-length Spp24, stimulated RUNX2, ATF4, and CSF1 transcription. This suggests that Spp24 truncation products have effects on osteoblastic differentiation mediated by kinase pathways that are independent of exogenous BMP/TGF-b cytokines. J. Cell. Biochem. 116: 767-777, 2015. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available