4.6 Article

A Molecular Docking and Dynamics Study to Screen Potent Anti-Staphylococcal Compounds Against Ceftaroline Resistant MRSA

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 117, Issue 2, Pages 542-548

Publisher

WILEY
DOI: 10.1002/jcb.25307

Keywords

ANTI-MRSA COMPOUNDS; RESISTANCE; LIGANDS; MOLECULAR DYNAMICS

Funding

  1. Indian Council of Medical Research (ICMR) [2011-03260, 2014-0099]

Ask authors/readers for more resources

World Health Organization reports that methicillin-resistant Staphylococcus aureus (MRSA) is the origin of higher proportion of hospital acquired infections. In order to combat the effect of MRSA infection, an ideal drug should stimulate the allosteric exposure of active site, prompting penicillin binding proteins (PBP2a) to bind with that particular compound. Ceftaroline shows high binding affinity towards PBP2a and also confers resistance against degrading enzymes. Recently, two amino acid alterations in the allosteric site of PBP2a, asparagine (N) to lysine (K) at position 146 and glutamic acid (E) to lysine at position 150 are reported to confer resistance against ceftaroline resulting in the rise of ceftaroline-resistant MRSA strains. The present study focuses on the identification of potential ligands that can effectively bind with allosteric site of PBP2a, that leads to the access of active site and entry of a beta-lactam antibiotic for effective inhibition. The results obtained from our study will be useful for designing effective compounds with potential therapeutic effects against ceftaroline resistant MRSA strains. (C) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available