4.5 Article Proceedings Paper

Continuous flow microreactor for protein PEGylation

Journal

BIOMICROFLUIDICS
Volume 12, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5030984

Keywords

-

Funding

  1. Natural Science and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

PEGylation is increasingly being utilized to enhance the therapeutic efficacy of biopharmaceuticals. Various chemistries and reaction conditions have been established to synthesize PEGylated proteins and more are being developed. Both the extent of conversion and selectivity of protein PEGylation are highly sensitive to process variables and parameters. Therefore, microfluidic-based high-throughput screening platforms would be highly suitable for optimization of protein PEGylation. As part of this study, a poly-dimethylsiloxane-based continuous flow microreactor system was designed and its performance was compared head-to-head with a batch reactor. The reactants within the microreactor were contacted by passive micromixing based on chaotic advection generated by staggered herringbone grooves embedded in serpentine microchannels. The microreactor system was provided with means for on-chip reaction quenching. Lysozyme was used as the model protein while methoxy-polyethylene glycol-(CH2)(5)COO-NHS was used as the PEGylation reagent. Full mixing was achieved close to the microreactor inlet, making the device suitable for protein PEGylation. The effect of mixing type, i.e., simple stirring versus chaotic laminar mixing on PEGylation, was investigated. Higher selectivity (as high as 100% selectivity) was obtained with the microreactor while the conversion was marginally lower. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available