4.5 Article

Microfluidics platform for measurement of volume changes in immobilized intestinal enteroids

Journal

BIOMICROFLUIDICS
Volume 8, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4870400

Keywords

-

Funding

  1. National Institutes of Health [DK72517, DK35124, EY13574, EB00415, DK26523, DK61765, DK72084, DK89502, NCATSTR00552]
  2. Cystic Fibrosis Foundation

Ask authors/readers for more resources

Intestinal enteroids are ex vivo primary cultured single-layer epithelial cell spheroids of average diameter similar to 150 mu m with luminal surface facing inward. Measurement of enteroid swelling in response to secretagogues has been applied to genetic testing in cystic fibrosis and evaluation of drug candidates for cystic fibrosis and secretory diarrheas. The current measurement method involves manual addition of drugs and solutions to enteroids embedded in a Matrigel matrix and estimation of volume changes from confocal images of fluorescently stained enteroids. We developed a microfluidics platform for efficient trapping and immobilization of enteroids for quantitative measurement of volume changes. Multiple enteroids are trapped in a pinball machine-like array of polydimethylsiloxane posts for measurement of volume changes in unlabeled enteroids by imaging of an extracellular, high-molecular weight fluorescent dye. Measurement accuracy was validated using slowly expanding air bubbles. The method was applied to measure swelling of mouse jejunal enteroids in response to an osmotic challenge and cholera toxin-induced chloride secretion. The microfluidics platform allows for parallel measurement of volume changes on multiple enteroids during continuous superfusion, without an immobilizing matrix, and for quantitative volume determination without chemical labeling or assumptions about enteroid shape changes during swelling. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available