4.5 Article

Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor

Journal

BIOMICROFLUIDICS
Volume 7, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4817771

Keywords

-

Funding

  1. National Institutes of Health [P01HG000205]

Ask authors/readers for more resources

Detection of proteins and nucleic acids is dominantly performed using optical fluorescence based techniques, which are more costly and timely than electrical detection due to the need for expensive and bulky optical equipment and the process of fluorescent tagging. In this paper, we discuss our study of the electrical properties of nucleic acids and proteins at the nanoscale using a nanoelectronic probe we have developed, which we refer to as the Nanoneedle biosensor. The nanoneedle consists of four thin film layers: a conductive layer at the bottom acting as an electrode, an oxide layer on top, and another conductive layer on top of that, with a protective oxide above. The presence of proteins and nucleic acids near the tip results in a decrease in impedance across the sensing electrodes. There are three basic mechanisms behind the electrical response of DNA and protein molecules in solution under an applied alternating electrical field. The first change stems from modulation of the relative permittivity at the interface. The second mechanism is the formation and relaxation of the induced dipole moment. The third mechanism is the tunneling of electrons through the biomolecules. The results presented in this paper can be extended to develop low cost point-of-care diagnostic assays for the clinical setting. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available