4.8 Article

Regio-, Diastereo-, and Enantioselective Decarboxylative Hydroaminoalkylation of Dienol Ethers Enabled by Dual Palladium/Photoredox Catalysis

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202200105

Keywords

Amino Acids; Dienol Ethers; Palladium; Photoredox; Stereoselectivity

Funding

  1. Chinese Scholarship Council

Ask authors/readers for more resources

The study presents a highly regio-, diastereo-, and enantioselective intermolecular hydroaminoalkylation (HAA) of alkenes using a unified photoredox and palladium catalytic system, allowing for the construction of vicinal amino tertiary ethers with exceptional levels of selectivity. The key step in the mechanism is shown to be a reversible hydropalladation.
Intermolecular photocatalytic hydroaminoalkylation (HAA) of alkenes have emerged as a powerful method for the construction of alkyl amines. Although there are some studies aiming at stereoselective photocatalytic HAA reactions, the alkenes are limited to electrophilic alkenes. Herein, we report a highly regio-, diastereo-, and enantioselective HAA of electron-rich dienol ethers and alpha-amino radicals derived from alpha-amino acids using a unified photoredox and palladium catalytic system. This decarboxylative 1,2-Markovnikov addition enables the construction of vicinal amino tertiary ethers with high levels of regio- (up to >19 : 1 rr), diastereo- (up to >19 : 1 dr), and enantioselectivity control (up to >99 % ee). Mechanistic studies support a reversible hydropalladation as a key step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available