4.5 Article Proceedings Paper

Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay

Journal

BIOMICROFLUIDICS
Volume 3, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3116665

Keywords

bioMEMS; biotechnology; enzymes; microfluidics; molecular biophysics; patient diagnosis

Ask authors/readers for more resources

Enzyme-linked immunosorbent assay (ELISA) has been widely used in medical diagnostics, environmental analyses, and biochemical studies. To reduce assay time and lower consumption of reagents in cytokine ELISA analysis, a polymeric microfluidic biochip has been designed and fabricated via several new techniques: Polyaniline-based surface modification for superhydrophobic capillary valving and oxygen plasma-poly(ethyleneimine)-tyrosinase-protein A modification for high sensitivity protein detection. The proper flow sequencing was achieved using the superhydrophobic capillary valves. The burst frequency of each valve was experimentally determined and compared with two capillary force equations and the fluent finite element simulation. This fully automated microfluidic biochip with an analyzer is able to provide high fluorescence signal of ELISA with a wider linear detection range and a much shorter assay time than 96-well microtiter plates. It is applicable to a variety of nonclinic research and clinically relevant disease conditions. The modification technologies in this study can be implemented in other lab-on-a-chip systems, drug/gene delivery carriers, and other immunoassay biosensor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available