4.7 Article

Seismic Velocity Model Building Using Recurrent Neural Networks: A Frequency-Stepping Approach

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2022.3210899

Keywords

Data models; Recurrent neural networks; Training; Buildings; Mathematical models; Computational modeling; Testing; Neural networks (NNs); seismic inversion; seismic velocity model building

Funding

  1. Saudi Aramco

Ask authors/readers for more resources

Data-driven artificial neural networks have advantages over conventional methods in geophysical problems. A new approach using LSTM-RNN for velocity model building shows high accuracy in recovering models compared to true ones. Challenges remain in effective and efficient network training.
Data-driven artificial neural networks (ANNs) demonstrably offer numerous advantages over the conventional deterministic methods in a wide range of geophysical problems. For seismic velocity model building, judiciously trained ANNs offer the possibility of estimating subsurface velocity models; however, there are substantial challenges with effective and efficient network training. Motivated by the multiscale approach commonly used to address full waveform inversion (FWI) nonlinearity challenges, we develop a frequency-stepping velocity model building approach that uses a sequence-to-sequence recurrent neural network (RNN) with built-in long short-term memory (LSTM). The input sequences to the LSTM-RNN consist of the frequency-domain seismic data ordered by frequency from lowest available to highest usable or chosen, while the corresponding output sequences are frequency-dependent smoothed velocity models. We compare the models recovered using the trained RNN to the true models qualitatively and quantitatively. The normalized root mean square (NRMS) misfit between the true and predicted models has a mean of 6%, which confirms that the network recovers highly accurate models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available