4.6 Article

Very strong interaction between FeN4 and titanium carbide for durable 4-electron oxygen reduction reaction suppressing catalyst deactivation by peroxide

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 10, Issue 45, Pages 24041-24050

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ta06496k

Keywords

-

Funding

  1. NRF [2021M3D1A2047042, 2019M1A2A2065614]
  2. MOTIE [20010282]
  3. UNIST, Korea [1.200092.01]

Ask authors/readers for more resources

The strong interaction between molecular catalyst (FePc) and support (1L-Ti3C2) was found to decrease the potential required for reducing oxygen, facilitating the oxygen reduction reaction (ORR) via a four-electron process.
Catalyst-support interaction triggering biased electron flows between the catalyst and reactant has been studied for electrocatalysis. The interaction was limited to the interfacial region between the catalyst and support when nanoparticle catalysts, which are bulky from the viewpoint of atomic dimensions, were employed. To clarify and maximize the effects of supports, herein, we investigated the catalyst-support interaction of a molecular catalyst loaded on a support. Iron phthalocyanine (FePc) as the molecular catalyst for the oxygen reduction reaction (ORR) was loaded on a two-dimensional monolayer leaf of titanium carbide (1L-Ti3C2). The strong interaction between Fe of FePc and Ti of 1L-Ti3C2 developed via FeTi2 coordination encouraged the square-planar structure of FePc to be concavely distorted. The electron-rich Fe-active site having extra electrons given by less electronegative Ti of Ti3C2 allowed the single-oxygen intermediate species (*O) to be readily protonated to *OH, moving the RDS to the desorption step having a lower free energy gap or kinetic barrier. As a result, the strong FePc-Ti3C2 interaction decreased the potential required for reducing oxygen and moreover completed the ORR via a four-electron (4e) process rather than the 2e ORR. The catalyst durability was also improved due to the absence of peroxide generated from the 2e process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available