4.8 Article

Natural versus anthropogenic controls on the dissolved organic matter chemistry in lakes across China: Insights from optical and molecular level analyses

Journal

WATER RESEARCH
Volume 221, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118779

Keywords

DOM; FT-ICR MS; lake; carbon cycle

Funding

  1. Natural Science Foundation of China [41730104, 42171374, 42071336, 42001311]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA28070500]
  3. National Key Research and Development Project of China [2021YFB3901101]
  4. Youth Innovation Promotion Association of Chinese Academy of Sciences [2020234]
  5. Special Research Assistant Funding Program of Chinese Academy of Sciences
  6. Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) [2022QNXZ03]
  7. Center for Ocean Research in Hong Kong and Macau (CORE) , a joint research center be-tween the Qingdao National Laboratory for Marine Science and Tech-nology and Hong Kong University of Science and Technology [2021T140662]
  8. China Postdoctoral Science Foundation [SMSEGL20SC01]
  9. Young Scientist Group Project of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences [2021T140662]
  10. Postdoctoral Fellowship of Jilin Province of China
  11. Center for Ocean Research in Hong Kong and Macau (CORE)
  12. Qingdao National Laboratory for Marine Science and Technology
  13. Hong Kong University of Science and Technology

Ask authors/readers for more resources

DOM is crucial for the global carbon biogeochemical cycle in aquatic ecosystems, with diverse sources and compositions across different lake regions. Humic-rich lakes exhibit more complex molecular compositions and higher aromaticity compared to protein-rich lakes.
Dissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties. The total fluorescence intensity of colored DOM (CDOM) for humic-rich lake regions (0.176 Raman unit; R.U.) is significantly (p<0.05) higher than that of the protein-rich lake region (0.084 R.U.). The combined percentages of CDOM absorption variance explained by the anthropogenic and climatic variables across the five lake regions of Northeastern lake region (NLR), Yungui Plateau lake region (YGR), Inner Mongolia-Xinjiang lake region (MXR), Eastern lake region (ELR), and Tibetan-Qinghai Plateau lake region (TQR) were 86.25%, 82.57%, 80.23%, 88.55%, and 87.72% respectively. The averaged relative intensity percentages of CHOS and CHONS formulas from humic-rich lakes (90.831%o, 10.561%o) were significantly higher than that from the protein-like lakes (47.484%o, 5.638%o), respectively. The more complex molecular composition with higher aromaticity occurred in the humic-rich lakes than in the protein-rich lakes. The increasing anthropogenic effects would significantly enhance the sources, transformation, and biodegradation of terrestrial DOM and link to the greenhouse gas emission and the carbon cycle in inland waters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available