4.8 Article

Determination of threshold energy dose for ultrasound-induced transdermal drug transport

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 63, Issue 1-2, Pages 41-52

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(99)00178-9

Keywords

sonophoresis; cavitation; transdermal; drug delivery; ultrasound dose

Ask authors/readers for more resources

Low-frequency (20 kHz) ultrasound has been shown to enhance transdermal transport of drugs, a phenomenon referred to as sonophoresis. In this paper, we report the threshold energy dose for ultrasound-induced transdermal drug transport. The threshold was determined by in vitro measurements of the dependence of sonophoretic enhancement on ultrasound parameters, including intensity, duty cycle, and exposure time. While the enhancement varies linearly with ultrasound intensity and exposure times, it is independent of the duty cycle in the range of parameters studied. The enhancement is also directly proportional to the ultrasound energy density once the threshold value is crossed. For full thickness pig skin, the threshold value is about 222 J/cm(2). The overall dependence of transport enhancement on ultrasound parameters is similar to that of cavitation measured in a model system, pitting of aluminum foil. Specifically, the extent of pitting is proportional to ultrasound intensity and exposure time and is independent of duty cycle. Furthermore, the extent of pitting is also proportional to the ultrasound energy density. The similarity between the parametric dependence of transport enhancement and cavitation is consistent with previous findings that cavitation plays the dominant role in sonophoresis. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available