4.8 Article

Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 63, Issue 1-2, Pages 141-153

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(99)00198-4

Keywords

paclitaxel prodrugs; liposomes; pharmacokinetics

Ask authors/readers for more resources

Paclitaxel (Taxol) is a diterpenoid isolated from Taxus brevifolia, used clinically for the treatment of ovarian and breast cancer. Due to its aqueous insolubility it is administered dissolved in ethanol and Cremophor EL (polyethoxylated castor oil), which has serious side effects. In order to eliminate this vehicle, in previous work we entrapped paclitaxel in conventional and in polyethylene glycol coated liposomes. However, in neither formulation did we obtain satisfactory entrapment efficiency. In this study we increased the paclitaxel concentration entrapped in liposomes by incorporating different water-soluble prodrugs, such as the 2'-succinyl, 2'-methylpyridinium acetate and 2'-mPEG ester paclitaxel derivatives, in the lipid vesicles. Liposomes containing 2'-mPEG (5000)-paclitaxel showed the best performance in terms of stability, entrapment efficiency and drug concentration (6.5 mg ml(-1)). The in vitro cytotoxic activity of this liposomal prodrug was similar to that of the parent drug. The pharmacokinetic parameters for the fret: and for the liposomal prodrugs fitted a bi-exponential plasma disposition. The most important change in pharmacokinetic values of the prodrug vs. the free drug liposomal formulations was t(1/2)beta, plasma lifetime, which was longer in liposomes containing 2'-mPEG (5000)-paclitaxel. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available