4.7 Article

Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 191, Issue 1, Pages 147-155

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.191.1.147

Keywords

scavenger receptor; macrophage; phagocytosis; gram-positive bacteria; Staphylococcus aureus

Funding

  1. NIAID NIH HHS [R01 AI020516, R37 AI020516, AI20516] Funding Source: Medline

Ask authors/readers for more resources

Infections with gram-positive bacteria are a major cause of morbidity and mortality in humans. Opsonin-dependent phagocytosis plays a major role in protection against and recovery from gram-positive infections. Inborn and acquired defects in opsonin generation and/or recognition by phagocytes are associated with an increased susceptibility to bacterial infections. In contrast, the physiological significance of opsonin-independent phagocytosis is unknown. Type I and II class A scavenger receptors (SR-AI/II) recognize a variety of polyanions including bacterial cell wall products such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA), suggesting a role for SR-AI/II in innate immunity to bacterial infections. Here, we show that SR-AI/II-deficient mice (MSR-A(-/-)) are more susceptible to intraperitoneal infection with a prototypic gram-positive pathogen, Staphylococcus aureus, than MSR-A(+/+) control mice. MSR-A(-/-) mice display an impaired ability to clear bacteria from the site of infection despite normal killing of S. aureus by neutrophils and die as a result of disseminated infection. Opsonin-independent phagocytosis of gram-positive bacteria by MSR-A(-/-) macrophages is significantly decreased although their phagocytic machinery is intact. Peritoneal macrophages from control mice phagocytose a variety of grant-positive bacteria in an SR-AI/II-dependent manner. Our findings demonstrate that SR-AI/II mediate opsonin-independent phagocytosis of gram-positive bacteria, and provide the first evidence that opsonin-independent phagocytosis plays a critical role in host defense against bacterial infections in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available