4.5 Article

Studies on C-phycocyanin from Cyanidium caldarium, a eukaryote at the extremes of habitat

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1456, Issue 2-3, Pages 99-107

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0005-2728(99)00110-3

Keywords

high temperature eukaryote; phycocyanin; biliprotein; Cyanidium caldarium

Ask authors/readers for more resources

C-Phycocyanin, a biliprotein, was purified from the red alga, Cyanidium caldarium. This alga grows at temperatures up to 57 degrees C, a very high temperature for a eukaryote, and at pH values down to 0.05. Using the chromophores on C-phycocyanin as naturally occurring reporter groups, the effects of temperature on the stability of the protein were studied by circular dichroism and absorption spectroscopy. The protein was unchanged from 10 to 50 degrees C, which indicates that higher temperatures are not required to cause the protein to be photosynthetically active. At 60 and 65 degrees C, which are above the temperatures at which the alga can survive, the protein undergoes irreversible denaturation. Gel-filtration column chromatography demonstrated that the irreversibility is caused by the dissociation of the trimeric protein to its constitutive polypeptides. Upon cooling, the alpha and beta polypeptides did not reassemble to the trimer. Unlike phycocyanins 645 and 612, the C-phycocyanin does not show a reversible conformational change at moderately high temperatures. At constant temperature, the C-phycocyanin was more stable than a mesophilic counterpart. It is designated a temperature-resistant protein. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available