4.8 Article

Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses

Journal

ONCOGENE
Volume 19, Issue 2, Pages 177-187

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1203304

Keywords

signaling pathways; tyrosine phosphorylation; actin cytoskeleton; cell adhesion; mitogen-activated protein kinases

Funding

  1. NICHD NIH HHS [HD26351, HD25938] Funding Source: Medline

Ask authors/readers for more resources

Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell-cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells, Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available