4.7 Article

Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex:: Gated substrate entry and proton relays support the proposed catalytic mechanism

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 295, Issue 2, Pages 357-374

Publisher

ACADEMIC PRESS LTD
DOI: 10.1006/jmbi.1999.3290

Keywords

FAD; heme; electron transfer; oxidation/reduction; enzyme catalysis

Funding

  1. NHLBI NIH HHS [HL16251] Funding Source: Medline
  2. NIGMS NIH HHS [GM20530] Funding Source: Medline

Ask authors/readers for more resources

The degradation of the toxic phenol p-cresol by Pseudomonas bacteria occurs by way of the protocatechuate metabolic pathway. The first enzyme in this pathway, p-cresol methylhydroxylase (PCMH), is a flavocytochrome c. The enzyme first catalyzes the oxidation of p-eresol to p-hydroxybenzyl alcohol, utilizing one atom of oxygen derived from water, and yielding one molecule of reduced FAD. The reducing electron equivalents are then passed one at a time from the flavin cofactor to the heme cofactor by intramolecular electron transfer, and subsequently to cytochrome oxidase within the periplasmic membrane via one or more soluble electron carrier proteins. The product, p-hydroxybenzyl alcohol, can also be oxidized by PCMH to yield p-hydroxybenzaldehyde. The fully refined X-ray crystal structure of PCMH in the native state has been obtained at 2.5 Angstrom resolution on the basis of the gene sequence. The structure of the enzyme-substrate complex has also been refined, at 2.75 Angstrom resolution, and reveals significant conformational changes in the active site upon substrate binding. The active site for substrate oxidation is deeply buried in the interior of the PCMH molecule. A route for substrate access to the site has been identified and is shown to be governed by a swinging-gate mechanism. Two possible proton transfer pathways, tl;at may assist in activating the substrate for nucleophilic attack and in removal of protons generated during the reaction, have been revealed. Hydrogen bonding interactions between the flavoprotein and cytochrome subunits that stabilize the intramolecular complex and may contribute to the electron transfer process have been identified. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available