4.7 Article

Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration

Journal

JOURNAL OF NEUROSCIENCE
Volume 20, Issue 2, Pages 660-665

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.20-02-00660.2000

Keywords

amyotrophic lateral sclerosis; glutamate; mouse; transgenic; glia; gliosis

Categories

Funding

  1. NINDS NIH HHS [NS01853] Funding Source: Medline

Ask authors/readers for more resources

Evidence garnered from both human autopsy studies and genetic animal models has suggested a potential role for astrocytes in the pathogenesis of amyotrophic lateral sclerosis (ALS). Currently, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) represent the only known cause of motoneuron loss in the disease, producing 21q linked familial ALS (FALS). To determine whether astrocytic dysfunction has a primary role in familial ALS, we have generated multiple lines of transgenic mice expressing G86R mutant SOD1 restricted to astrocytes. In GFAP-m SOD1 mice, astrocytes exhibit significant hypertrophy and increased GFAP reactivity as the animals mature. However, GFAP-mutant SOD1 transgenic mice develop normally and do not experience spontaneous motor deficits with increasing age. Histological examination of spinal cord in aged GFAP-mSOD1 mice reveals normal motoneuron and microglial morphology. These results indicate that 21q linked FALS is not a primary disorder of astrocytes, and that expression of mutant SOD1 restricted to astrocytes is not sufficient to cause motoneuron degeneration in vivo. Expression of mutant SOD1 in other cell types, most likely neurons, is critical for the initiation of disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available