4.7 Article

Effects of clumping on the observed properties of dusty galaxies

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 311, Issue 3, Pages 601-610

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1365-8711.2000.03113.x

Keywords

radiative transfer; scattering; methods : numerical; ISM : clouds; dust, extinction; galaxies : spiral

Ask authors/readers for more resources

We present Monte Carlo radiative-transfer simulations for spiral galaxies modelled as a stellar disc and a two-phase clumpy dust distribution. We divide the volume occupied by the dust into a three-dimensional grid and assign each cell a clump or smooth medium status. Cell dimension, clump dust mass and spatial distribution are derived from the observed properties of giant molecular clouds and molecular gas in the Galaxy. We produce models for several values of the optical depth and fraction of the interstellar medium residing in clumps. As a general result, clumpy models are less opaque than the corresponding homogeneous models. For the adopted parameters, the increase in the fraction of energy that escapes the disc is moderate, resulting in surface-brightness profiles that are less than one magnitude brighter than those of the homogeneous models. The effects of clumping are larger for edge-on views of the disc. This is in contrast with previous preliminary results for clumping in the literature. We show how differences arise from the different parametrization and clump distribution adopted. We also consider models in which a fraction of the stellar radiation is emitted within the clumps. In this case, galaxies are less transparent than in the case when only dust is clumped. The opacity can be even higher than in the homogeneous case, depending on the fraction of embedded stellar emission. We point out the implications of the results for the determination of the opacity and dust mass of spiral galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available