4.3 Article

Cellular localization and developmental changes of Zip8, Zip14 and transferrin receptor 1 in the inner ear of rats

Journal

BIOMETALS
Volume 27, Issue 4, Pages 731-744

Publisher

SPRINGER
DOI: 10.1007/s10534-014-9765-0

Keywords

Zip8; Zip14; Transferrin receptor; Hair cells; Spiral ganglion neurons; Stria vascularis; Metal transporters

Funding

  1. National Institute for Occupational Safety and Health [R01 OH010235]

Ask authors/readers for more resources

Prior studies have demonstrated that the inner ear can accumulate a variety of essential and potentially toxic heavy metals including manganese, lead, cobalt and cadmium. Metal accumulation is regulated in part by the functionality and affinity of these metals for the different transport systems responsible for uptake across the blood-cochlea barrier and their subsequent uptake into the different cells within the inner ear. Transport of these metals across cell membranes occurs by many of the same transport systems which include DMT1, Zip8 and Zip14. All three metal transporters have been identified in the cochlea based on quantitative PCR analysis. Prior studies in our laboratory examined the localization and developmental changes of DMT1 in rat cochlea and since the two Zip proteins are also likely to contribute to the transport of essential and non-essential divalent cations, we performed immunolabeling experiments in postnatal day three rat pups and adult rats. For comparison, we also immunolabeled the specimens with antibody against transferrin receptor 1 (TfR1) which is important in DMT1-mediated transport of Fe and Mn. Results presented in this paper demonstrate that the cellular and subcellular distribution of both Zip8 and Zip14 within the different components of the inner ear are distinct from that of DMT1. Nuclear localization for both Zip transporters as well as TfR1 was observed. The findings also reveal that the selective distribution of the three proteins was altered during development presumably to meet the changing needs of the cells to maintain normal and functional levels of iron and other essential metals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available