4.8 Article

A role for Smad6 in development and homeostasis of the cardiovascular system

Journal

NATURE GENETICS
Volume 24, Issue 2, Pages 171-174

Publisher

NATURE AMERICA INC
DOI: 10.1038/72835

Keywords

-

Ask authors/readers for more resources

Smad proteins are intracellular mediators of signalling initiated by Tgf-beta superfamily ligands (Tgf-beta s, activins and bone morphogenetic proteins (Bmps)). Smads 1, 2, 3, 5 and 8 are activated upon phosphorylation by specific type I receptors, and associate with the common partner Smad4 to trigger transcriptional responses(1). The inhibitory Smads (6 and 7) are transcriptionally induced in cultured cells treated with Tgf-beta superfamily ligands, and downregulate signalling in in vitro assays(2-7). Gene disruption in mice has begun to reveal specific developmental and physiological functions of the signal-transducing Smads. Here we explore the role of an inhibitory Smad in vivo by targeted mutation of Madh6 (which encodes the Smad6 protein). Targeted insertion of a LacZ reporter demonstrated that Smad6 expression is largely restricted to the heart and blood vessels, and that Madh6 mutants have multiple cardiovascular abnormalities. Hyperplasia of the cardiac valves and outflow tract septation defects indicate a function for Smad6 in the regulation of endocardial cushion transformation. The role of Smad6 in the homeostasis of the adult cardiovascular system is indicated by the development of aortic ossification and elevated broad pressure in viable mutants. These defects highlight the importance of Smad6 in the tissue-specific modulation of Tgf-beta superfamily signalling pathways in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available