4.3 Article Proceedings Paper

Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light

Journal

IEEE TRANSACTIONS ON PLASMA SCIENCE
Volume 28, Issue 1, Pages 83-88

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/27.842870

Keywords

food and contact-surface disinfection; high peak power; microbial inactivation; pulsed-light; ultraviolet (UV)-effects

Ask authors/readers for more resources

The lethality of high-intensity pulsed-light emissions from low and high ultraviolet (UV) light sources on predetermined microbial populations has been investigated. Prior to treatment, the bacterial enteropathogens Bacillus cereus, Escherichia coli, and Salmonella enteritidis and the food-spoilage fungi Aspergillus niger and Fusarium culmorum were seeded separately onto the surface of either tryptone soya yeast extract or malt extract agar plates. Prescribed microbial population densities were applied to the test media and these samples were exposed to one of two light sources. These were low-pressure, Xenon filled, flash lamps that produced either high or low UV intensities. They were operated in pulsed mode, being driven by a stacked Blumlein cable generator. Microbial samples were treated by exposure to different numbers of light pulses. The treated bacterial populations were reduced by similar to 8 log orders after 1000 light-pulses of the higher UV intensity light and the fungal counts had a corresponding reduction of 4.5 log orders. The fungus, Aspergillus niger, was shown to be significantly more resistant in spore form to the intense UV light compared with Fusarium culmorum. This resistance has been attributed to the high level of UV absorbance associated with the dark pigment present in A. niger. The pulsed light source of lower UV intensity was shown to be significantly less effective in reducing microbial populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available