4.7 Article

Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients

Journal

DIABETES
Volume 49, Issue 2, Pages 284-292

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.49.2.284

Keywords

-

Ask authors/readers for more resources

We characterized metabolic and mitrogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min, Insulin-stimulated (0.6-60 nmol/l) tyrosine phosphorylation of the insulin receptor beta-subunit, mitogen-activated protein (MAP) kinase phosphorylation, and glycogen synthase activity were not altered in type 2 diabetic subjects. In contrast, insulin-stimulated tyrosine phosphorylation of IRS-1 and anti-phosphotyrosine-associated PI 3-kinase activity were reduced 40-55% in type 2 diabetic subjects at high insulin concentrations (2.4 and 60 nmol/l, respectively). Impaired glucose transport activity was noted at an insulin concentrations (0.6-60 nmol/l). Aberrant, protein expression cannot; account for these insulin-signaling defects because expression of insulin receptor, IRS-1, IRS-2, MAP kinase, or glycogen synthase was similar between type 2 diabetic and control subjects. In skeletal muscle from type 2 diabetic subjects, IRS-1 phosphorylation, PI 3-kinase activity, and glucose transport activity were impaired, whereas insulin receptor tyrosine phosphorylation, MAP kinase phosphorylation, and glycogen synthase activity were normal. Impaired insulin signal transduction in skeletal muscle from type 2 diabetic patients may partly account for reduced insulin-stimulated glucose transport; however, additional defects are likely to play a role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available