4.5 Article

Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 88, Issue 2, Pages 794-796

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jappl.2000.88.2.794

Keywords

hexokinase; glycogen; insulin action

Ask authors/readers for more resources

To investigate the effect of exercise on GLUT-4, hexokinase, and glycogenin gene expression in human skeletal muscle, 10 untrained subjects (6 women and 4 men, 21.4 +/- 1.2 yr, 66.3 +/- 5.0 bg, peak oxygen consumption = 2.30 +/- 0.19 l/min) exercised for 60 min on a cycle ergometer at a power output requiring 73 +/- 4% peak oxygen consumption. Muscle samples were obtained by needle biopsy before, immediately after, and 3 h after exercise. Gene expression was quantified, relative to 295 ribosomal protein cDNA, by RT-PCR. GLUT-4 gene expression was increased immediately after exercise (1.7 +/- 0.4 vs. 0.9 +/- 0.3 arbitrary units; P < 0.05) and remained significantly higher than baseline 3 h after the end of exercise (2.2 +/- 0.4 vs. 0.9 +/- 0.3 arbitrary units; P < 0.05). Hexokinase II gene expression was significantly higher than the resting value 3 h after the end of exercise (2.9 +/- 0.4 vs. 1.3 +/- 0.3 arbitrary units; P < 0.05). Exercise increased glycogenin mRNA more than twofold (2.8 +/- 0.6 vs. 1.2 +/- 0.2 arbitrary units; P < 0.05) 3 h after the end of exercise. For the first time, we report that a single bout of exercise is sufficient to cause upregulation of GLUT-4 and glycogenin gene expression in human skeletal muscle. Whether these increases, together with the associated increase in hexokinase II gene expression, lead to increased expression of these key proteins in skeletal muscle and contribute to the enhanced skeletal muscle glucose uptake, glycogen synthesis, and insulin action observed following exercise remains to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available