4.2 Article

Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.429646

Keywords

-

Ask authors/readers for more resources

The current trend in computational hemodynamics is to employ realistic models derived from ex vivo or in vivo imaging. Such studies typically produce a series of images from which the lumen boundaries must first be individually extracted (i.e., two-dimensional segmentation), and then serially reconstructed to produce the three-dimensional lumen surface geometry. In this paper, we present a rapid three-dimensional segmentation technique that combines these two steps, based on the idea of an expanding virtual balloon. This three-dimensional technique is demonstrated in application to finite element meshing and CFD modeling of flow in the carotid bifurcation of a normal volunteer imaged with black blood MRI. Wall shear stress patterns computed using a mesh generated with the three-dimensional technique agree well with those computed using a mesh generated construction. In addition to reducing the time required to extract the lumen surface from hours to minutes, our approach is easy to learn and use and requires minimal user intervention, which can potentially increase the accuracy and precision of quantitative and longitudinal studies of hemodynamics and vascular disease. [S0148-0731(00)00201-6].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available