4.6 Article

Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834

Publisher

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-000-0280-2

Keywords

-

Ask authors/readers for more resources

A microcrack propagation model was developed to predict thermomechanical fatigue (TMF) life of high-temperature titanium alloy IMI 834 from isothermal data. Pure fatigue damage, which is assumed to evolve independent of time, is correlated using the cyclic J integral. For test temperatures exceeding about 600 degrees C, oxygen-induced embrittlement of the material ahead of the advancing crack tip is the dominating environmental effect. To model the contribution of this damage mechanism to fatigue crack growth, extensive use of metallographic measurements was made. Comparisons between stress-free annealed samples and fatigued specimens revealed that oxygen uptake is strongly enhanced by cyclic plastic straining. In fatigue tests with a temperature below about 500 degrees C, the contribution of oxidation was found to be negligible, and the detrimental environmental effect was attributed to the reaction of water vapor with freshly exposed material at the crack tip. Both environmental degradation mechanisms contributed to damage evolution only in out-of-phase TMF tests, and thus, this loading mode is most detrimental. Electron microscopy revealed that cyclic stress-strain response and crack initiation mechanisms are affected by the change from planar dislocation slip to a more wavy type as test temperature is increased. The predictive capabilities of the model are shown to result from the close correlation with the microstructural observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available