4.5 Article

Contractile and fatigue properties of the rat diaphragm musculature during the perinatal period

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 88, Issue 2, Pages 573-580

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jappl.2000.88.2.573

Keywords

fetal breathing; respiration; muscle

Ask authors/readers for more resources

The following two hypotheses regarding diaphragm contractile properties in the perinatal rat were tested. First, there is a major transformation of contractile and fatigue properties during the period between the inception of inspiratory drive transmission in utero and birth. Second, the diaphragm muscle properties develop to functionally match changes occurring in phrenic motoneuron electrophysiological properties. Muscle force recordings and intracellular recordings of end-plate potentials were measured by using phrenic nerve-diaphragm muscle in vitro preparations isolated from rats on embryonic day 18 and postnatal days 0-1. The following age-dependent changes occurred: 1) twitch contraction and half relaxation times decreased approximately two- and threefold, respectively; 2) the tetanic force levels increased approximately fivefold; 3) the ratio of peak twitch force to maximum tetanic force decreased 2.3-fold; 4) the range of forces generated by the diaphragm in response to graded nerve stimulation increased approximately twofold; 5) the force-frequency curve was shifted to the right; and 6) the propensity for neuromuscular transmission failure decreased. In conclusion, the diaphragm contractile and phrenic motoneuron repetitive firing properties develop in concert so that the full range of potential diaphragm force recruitment can be utilized and problems associated with diaphragm fatigue are minimized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available