4.5 Article

Synergistic actions of antibacterial neutrophil defensins and cathelicidins

Journal

INFLAMMATION RESEARCH
Volume 49, Issue 2, Pages 73-79

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s000110050561

Keywords

defensin; cathelicidin; antibacterial peptide; membrane permeabilization; neutrophil

Ask authors/readers for more resources

Objective: Activated neutrophils extracellularly release antibacterial defensins and cathelicidins from the granules. In this study, to elucidate the interactions between defensins and cathelicidins in the extracellular environment, we evaluated the individual and synergistic actions of defensins and cathelicidins in the presence of physiological concentration of NaCl (150 mM). Materials and Methods. Antibacterial activities against Escherichia coli and Staphylococcus aureus were assessed using human and guinea pig defensins and cathelicidins. Furthermore, the effect of defensins and cathelicidins on membrane permeabilization was examined using E. coli ML-35p, as a target organism. Results: In the absence of NaCl, human defensin (HNP-1) and guinea pig defensins (GNCPs) exhibited the antibacterial activities in a dose-dependent manner (0.1-10 mu g/ml); however, their activities were completely lost in the presence of 150 mM NaCl. In contrast, the antibacterial activities of human cathelicidin (CAP18/LL-37) and guinea pig cathelicidin (CAP11) were resistant to NaCl. Interestingly, HNP-1 and GNCPs synergized with CAP18/LL-37 and CAP11 to enhance the antibacterial activities against E. coli and S. aureus in the presence of 150 mM NaCl (p<0.05). Similarly, HNP-1 and GNCPs were synergistic with CAP18/LL-37 and CAP11 to potentiate the outer and inner membrane permeabilization off. coli ML-35p (p<0.05). Conclusions: Together these observations indicate that when extracellularly released from neutrophils, defensins cannot function as antibacterial molecules by themselves, but can synergistically work with cathelicidins to exert the antibacterial activity in the extracellular milieu by augmenting the membrane permeabilization of target cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available