4.7 Article

3-morpholinosydnonimine (SIN-1)-induced oxidative stress leads to necrosis in hypertrophic chondrocytes in vitro

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 106, Issue -, Pages 1696-1704

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.07.128

Keywords

Hypertrophic chondrocytes; Necrosis; Apoptosis; Oxidative stress

Funding

  1. National Natural Science Foundation of China [81573102, 81273006]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2017JM812]

Ask authors/readers for more resources

Chondrocyte is targeted for disruption in Osteoarthritis (OA) and Kashin-Beck Disease (KBD), and chondrocyte death in cartilage may contribute to the progression of OA and KBD. Oxidative stress leads to increased risk for OA. Previous work in our laboratory implicates oxidative stress as a potential mediator in children with KBD. While these studies suggest a role for oxidative stress in the modulation of OA and KBD, the direct effects of reactive oxygen species/reactive nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN1), a spontaneous ROS/RNS generator, decreased the cell viability in hypertrophic chondrocytes in a dose- and time- dependent manner. SIN-1 induced necrosis in hypertrophic chondrocytes, whereas triggered apoptosis in non-hypertrophic cells of non-differentiated ATDC5 cells and C28/I2 cells. Ultrastructural analysis of hypertrophic chondrocyte treated with SIN-1 revealed morphological changes, such as plasma membrane breakdown, generalized swelling of the cytoplasm and organelles, even to disappearance. Moreover, SIN-1 induced chondronecrosis in the deep zone of engineered cartilage tissue, such as cell-free vacancy and red ghost cells. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenous ROS/RNS, leads to necrosis in hypertrophic chondrocytes. Oxidative stress-mediated necrotic cell death contributes to chondronecrosis in the deep zone of cartilage in both OA and KBD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available