4.6 Article

A novel heart sound activity detection framework for automated heart sound analysis

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 13, Issue -, Pages 174-188

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2014.05.002

Keywords

Phonocardiogram; Heart sound analysis; Heart sound segmentation; Cardiac signal monitoring; Audio-visual stethoscope

Ask authors/readers for more resources

In automated heart sound analysis and diagnosis, a set of clinically valued parameters including sound intensity, frequency content, timing, duration, shape, systolic and diastolic intervals, the ratio of the first heart sound amplitude to second heart sound amplitude (S1/S2), and the ratio of diastolic to systolic duration (D/S) is measured from the PCG signal. The quality of the clinical feature parameters highly rely on accurate determination of boundaries of the acoustic events (heart sounds S1, S2, S3, S4 and murmurs) and the systolic/diastolic pause period in the PCG signal. Therefore, in this paper, we propose a new automated robust heart sound activity detection (HSAD) method based on the total variation filtering, Shannon entropy envelope computation, instantaneous phase based boundary determination, and boundary location adjustment. The proposed HSAD method is validated using different clean and noisy pathological and non-pathological PCG signals. Experiments on a large PCG database show that the HSAD method achieves an average sensitivity (Se) of 99.43% and positive predictivity (+P) of 93.56%. The HSAD method accurately determines boundaries of major acoustic events of the PCG signal with signal-to-noise ratio of 5 dB. Unlike other existing methods, the proposed HSAD method does not use any search-back algorithms. The proposed HSAD method is a quite straightforward and thus it is suitable for real-time wireless cardiac health monitoring and electronic stethoscope devices. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available