4.8 Article

The role of the LDL receptor in apolipoprotein B secretion

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 105, Issue 4, Pages 521-532

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI8623

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL056595, HL-56595] Funding Source: Medline
  2. NIDDK NIH HHS [T32 DK007665, DK 07665] Funding Source: Medline
  3. PHS HHS [R12609] Funding Source: Medline

Ask authors/readers for more resources

Familial hypercholesterolemia is caused by mutations in the LDL receptor gene (Ldlr). Elevated plasma LDL levels result from slower LDL catabolism and a paradoxical lipoprotein overproduction. We explored the relationship between the presence of the LDL receptor and lipoprotein secretion in hepatocytes from both wild-type and LDL receptor-deficient mice. Ldlr(-/-) hepatocytes secreted apoB100 at a 3.5-fold higher rate than did wild-type hepatocytes. ApoB mRNA abundance, initial apoB synthetic rate, and abundance of the microsomal triglyceride transfer protein 97-kDa subunit did not differ between wild-type and Ldlr(-/-) cells. Pulse-chase analysis and multicompartmental modeling revealed that in wild-type hepatocytes, approximately 55% of newly synthesized apoB100 was degraded. However, in Ldlr(-/-) cells, less than 20% of apoB was degraded. In wild-type hepatocytes, approximately equal amounts of LDL receptor-dependent apoB100 degradation occured via reuptake and presecretory mechanisms. Adenovirus-mediated overexpression of the LDL receptor in Ldlr(-/-) cells resulted in degradation of approximately 90% of newly synthesized apoB100. These studies show that the LDL receptor alters the proportion of apoB that escapes co- or post-translational presecretory degradation and mediates the reuptake of newly secreted apoB-containing lipoprotein particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available