4.3 Article

Pulsed EPR spin-probe study of intracellular glasses in seed and pollen

Journal

JOURNAL OF MAGNETIC RESONANCE
Volume 142, Issue 2, Pages 364-368

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/jmre.1999.1950

Keywords

seed; pollen; librational motion; spin probe; ED EPR

Ask authors/readers for more resources

EPR spectra of 3-carboxy-proxyl (CP) in dry biological tissues exhibited a temperature-dependent change in the principal value A'(zz) of the hyperfine interaction tensor. The A'(zz) value changed sharply at a particular temperature that was dependent on water content. At elevated water contents, the break occurred at lower temperatures and appeared to be associated with the melting of the cytoplasmic glassy state. To investigate the reason for the change in A'(zz) we employed echo-detected EPR (ED EPR) spectroscopy. The shape of the ED EPR spectrum revealed the presence of librational motion of the spin probe, a motion typically present in glassy materials. The similarities in temperature dependency of A'(zz) and librational motion of CP in pea seed axes indicated that the change in A'(zz) arose from librational motion. ED EPR measurements of CP as a function of water content in Typha latifolia pollen showed that librational motion decreased with decreasing water contents until a plateau or minimum was reached. ED EPR spectroscopy is a valuable technique for characterizing the relation between molecular motion and storage kinetics of dry seed and pollen, (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available