4.5 Article

Dynamics of supersymmetric SU(nc) and USp(2nc) gauge theories

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1088/1126-6708/2000/02/004

Keywords

nonperturbative effects; spontaneous symmetry breaking; global symmetries; supersymmetry and duality

Ask authors/readers for more resources

We study dynamical flavor symmetry breaking in the context of a class of N = 1 supersymmetric SU(n(c)) and USp(2n(c)) gauge theories, constructed from the exactly solvable N = 2 theories by perturbing them with small adjoint and generic bare hypermultiplet (quark) masses. We find that the flavor U(n(f)) symmetry in SU(n(c)) theories is dynamically broken to U(r) x U(n(f) - r) groups for n(f) less than or equal to n(c). In the r = 1 case the dynamical symmetry breaking is caused by the condensation of monopoles in the n(f) representation. For general r, however, the monopoles in the <(n(f)C(r))under bar> representation, whose condensation could explain the flavor symmetry breaking but would produce too-many Nambu-Goldstone multiplets, actually break up into magnetic quarks which condense and induce confinement and the symmetry breaking. In USp(2n(c)) theories with n(f) less than or equal to n(c) + 1, the flavor SO(2n(f)) symmetry is dynamically broken to U(n(f)), but with no description in terms of a weakly coupled local field theory. In both SU(n(c)) and USp(2n(c)) theories, with larger numbers of quark flavors, besides the vacua with these properties, there exist also vacua with no flavor symmetry breaking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available