4.7 Article

Smooth muscle α-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex

Journal

CIRCULATION RESEARCH
Volume 86, Issue 2, Pages 221-232

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.86.2.221

Keywords

serum response factor; smooth muscle alpha-actin; CArG element

Funding

  1. NHLBI NIH HHS [R01 HL-38854, F32 HL-10038, P01 HL-19242] Funding Source: Medline

Ask authors/readers for more resources

Previous studies have shown that multiple serum response factor (SRF)-binding CArG elements were required for smooth muscle cell (SMC)-specific regulation of smooth muscle (SM) alpha-actin expression. However, a critical question remains as to the mechanisms whereby a ubiquitously expressed transcription factor such as SRF might contribute to SMC-specific expression. The goal of the present study was to investigate the hypothesis that SMC-selective expression of SM a-actin is due at least in part to (1) unique CArG flanking sequences that distinguish the SM alpha-actin CArGs from other ubiquitously expressed CArG-dependent genes such as c-fos, (2) cooperative interactions between CArG elements, and (3) SRF-dependent binding of SMC-selective proteins to the CArG-containing regions of the promoter. Results demonstrated that specific sequences nanking CArG B were important for promoter activity in SMCs but not in bovine aortic endothelial cells. We also provided evidence indicating that the structural orientation between CArGs A and B was an important determinant of promoter function. Electrophoretic mobility shift assays and methylation interference footprinting demonstrated that a unique SRF-containing complex formed that was selective for SMCs and, furthermore, that this complex was probably stabilized by protein-protein interactions and not by specific interactions with CArG flanking sequences. Taken together, the results of these studies provide evidence that SM alpha-actin expression in SMCs is complex and may involve the formation of a unique multiprotein initiation complex that is coordinated by SRF complexes bound to multiple CArG elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available