4.4 Article

An apoptotic model for nitrosative stress

Journal

BIOCHEMISTRY
Volume 39, Issue 5, Pages 1040-1047

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi992046e

Keywords

-

Funding

  1. NHLBI NIH HHS [HL52529, HL59130] Funding Source: Medline

Ask authors/readers for more resources

Nitric oxide overproduction has been implicated in the pathogenesis of many disorders, including artherosclerosis, neurodegenerative diseases, inflammatory and autoimmune diseases, and cancer. The common view holds that nitric oxide-induced cellular injury is caused by oxidative stress. This theory predicts that interactions between reactive nitrogen species and reactive oxygen species produce powerful oxidants that initiate cell death programs. Cytokine-treated murine macrophages are the prototype of this form of cellular injury. Here we report that generation of reactive nitrogen species upon lipopolysacharide/interferon-gamma stimulation of RAW 264.7 cells is largely divorced from production of reactive oxygen species, and that oxidative stress is not principally responsible for cell death (in this model). Rather, the death program is induced mainly by a nitrosative challenge, characterized by the accrual of nitrosylated proteins without a major alteration in cellular redox state, Moreover, interactions between reactive oxygen and nitrogen species may alter the balance between pathways that yield nitrite and nitrate, without impacting the level of S-nitrosylation or extent of cell death. Our results thus (1) provide new insights into NO-related metabolic pathways, (2) demonstrate that apoptotic injury can be caused by nitrosative mechanisms, and (3) establish a model for nitrosative stress in mammalian cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available