4.3 Article Proceedings Paper

Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery

Journal

BIOMEDICAL MICRODEVICES
Volume 10, Issue 6, Pages 785-793

Publisher

SPRINGER
DOI: 10.1007/s10544-008-9192-5

Keywords

drug delivery; hyperthermia; nanoparticles; solid lipid nanoparticles; homogenization; magnetic heating; controlled release

Ask authors/readers for more resources

This paper presents the development of magnetic lipid nanoparticles that could serve as controlled delivery vehicles for releasing encapsulated drugs in a desired manner. The nanoparticles are composed of multiple drugs in lipid matrices, which are solid at body temperature and melt around 45 degrees C to 55 degrees C. In addition, super-paramagnetic gamma-Fe2O3 particles with sizes ranging from 5 to 25 nm are surface modified and dispersed uniformly in the lipid nanoparticles. In the prototype demonstration, lipid nanoparticles with average sizes between 100 and 180 nm were fabricated by high-pressure homogenization at elevated temperatures. When exposed to an alternating magnetic field of 60 kA/m at 25 kHz, a solution containing 2 g/L encapsulated gamma-Fe2O3 particles showed a temperature increase from 37 degrees C to 50 degrees C in 20 min. Meanwhile, the dissipated heat melted the surrounding lipid matrices and resulted in an accelerated release of the encapsulated drugs. Within 20 min, approximately 35% of the encapsulated drug molecules were released from the lipid nanoparticles through diffusion. As such, the presented lipid nanoparticles enable a new scheme that combines magnetic control of heating and drug delivery, which could greatly enhance the performance of encapsulated drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available