4.7 Article

Cosmological consequences of slow-moving bubbles in first-order phase transitions

Journal

PHYSICAL REVIEW D
Volume 61, Issue 4, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevD.61.043502

Keywords

-

Ask authors/readers for more resources

In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of extra defects, and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available