4.8 Article

Cell separation by dielectrophoretic field-flow-fractionation

Journal

ANALYTICAL CHEMISTRY
Volume 72, Issue 4, Pages 832-839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac990922o

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK51065-01, R01 DK051065-04, R01 DK051065] Funding Source: Medline

Ask authors/readers for more resources

Dielectrophoretic field-now-fractionation (DEP-FFF) was applied to several clinically relevant cell separation problems, including the purging of human breast cancer cells from normal T-lymphocytes and from CD34(+) hematopoietic stem cells, the separation of the major leukocyte subpopulations, and the enrichment of leukocytes from blood. Cell separations were achieved in a thin chamber equipped with a microfabricated, interdigitated electrode array on its bottom wall that was energized with AC electric signals. Cells were levitated by the balance between DEP and sedimentation forces to different equilibrium heights and were transported at differing velocities and thereby separated when a velocity profile was established in the chamber. This bulk-separation technique adds cell intrinsic dielectric properties to the catalog of physical characteristics that can be applied to cell discrimination. The separation process and performance can be controlled through electronic means. Cell labeling is unnecessary, and separated cells may be cultured and further analyzed. It can be scaled up for routine laboratory cell separation or implemented on a miniaturized scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available