4.8 Article

Stiffness of single-walled carbon nanotubes under large strain

Journal

PHYSICAL REVIEW LETTERS
Volume 84, Issue 8, Pages 1712-1715

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.84.1712

Keywords

-

Ask authors/readers for more resources

Large-scale molecular dynamic simulations of the axial deformations in single-walled carbon nanotubes have been performed using an O(N) tight-binding method. Our simulations indicate that under large strain, 0 K stress is remarkably sensitive to helicity, and that a zigzag nanotube and an armchair nanotube are the stiffest, respectively, under elongation and compression regimes. Furthermore, the elastic properties of a graphite sheet have been investigated using a simple harmonic potential and an analytic bond-order potential. The results suggest that the unique elastic properties of carbon nanotubes originate from those of a six-membered ring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available