4.5 Article

Reinforcement of porous alginate scaffolds by incorporating electrospun fibres

Journal

BIOMEDICAL MATERIALS
Volume 3, Issue 3, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-6041/3/3/034102

Keywords

-

Funding

  1. Ministry of Education, Culture, Science, Sports and Technology of Japan [19760554]
  2. Grants-in-Aid for Scientific Research [19760554] Funding Source: KAKEN

Ask authors/readers for more resources

The mechanical properties of scaffolds play a vital role in transmitting input mechanical signals to the cells within them. We aimed to modify mechanical properties of porous scaffolds by incorporating electrospun fibres into their frameworks. Porous constructs containing electrospun silicate fibres were prepared from Na-alginate aqueous solutions suspending the silicate fibres with (ASF) or without amino groups (NASF) via an all-aqueous method based on a freeze-drying technique. The repulsion forces of constructs containing ASF towards compression increased as the fibre content increased. In contrast, constructs containing NASF showed no such increases in repulsion forces. Cells seeded onto constructs containing ASF exhibited suppressed growth, similar to cells seeded onto alginate scaffolds without fibres. In contrast, cells seeded onto scaffolds containing NASF showed about two-fold faster growth than cells seeded onto scaffolds containing ASF. The differences in the mechanical properties and cell growth profiles between the scaffolds containing ASF and NASF can be explained by the formation and non-formation of electrostatic bonds between the fibres and alginate, respectively. The results obtained in the present study demonstrate the feasibility of incorporating electrospun fibres for reinforcement of alginate scaffolds and enhancement of cell growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available