4.6 Article

SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 8, Pages 5983-5986

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.8.5983

Keywords

-

Funding

  1. NHLBI NIH HHS [HL52132] Funding Source: Medline

Ask authors/readers for more resources

Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available