4.6 Article

Opposing role of mitogen-activated protein kinase subtypes, Erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 8, Pages 5613-5619

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.8.5613

Keywords

-

Ask authors/readers for more resources

The present studies were performed to determine subtype-specific roles of mitogen-activated protein kinase in chondrogenesis, Erk-1/2 activities, downstream of protein kinase C, decreased as chondrogenesis proceeded, whereas p38 activities, independent of protein kinase C, continuously increased during chondrogenesis. Inhibition of Erk-1/2 with PD98059 enhanced chondrogenesis up to 1.7-fold, whereas inhibition of p38 with SB203580 reduced it to about 30% of the control level. Inhibition of Erk-1/2 or p38 did not affect precartilage condensation. However, cartilage nodule formation was significantly blocked by the inhibition of p38, whereas Erk-1/2 inhibition did not affect it. Modulation of chondrogenesis by the inhibition of Erk-1/2 and p38 was accompanied by altered expression of adhesion molecules in an opposite way. Expression of N-cadherin was reduced as chondrogenesis proceeded. Inhibition of p38 caused sustained expression of N-cadherin, whereas Erk-1/2 inhibition accelerated the reduction of N-cadherin expression. Expression of integrin alpha 5 beta 1 and fibronectin were found to transiently increase during chondrogenesis. Inhibition of p38 caused continuous increase of expression of these molecules, whereas Erk-1/2 inhibition accelerated the decrease of expression of these molecules at a later period of chondrogenesis. Because temporal expression of these adhesion molecules regulates chondrogenesis, the above results indicate that Erk-1/2 and p38 conversely regulate chondrogenesis at post-precartilage condensation stages by modulating expression of adhesion molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available