4.6 Article

WD40 repeat proteins striatin and S/G2 nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 8, Pages 5257-5263

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.8.5257

Keywords

-

Funding

  1. NCI NIH HHS [CA57327, R01 CA057327] Funding Source: Medline

Ask authors/readers for more resources

Protein phosphatase 2A (PP2A) is a multifunctional serine/threonine phosphatase that is critical to many cellular processes including development, neuronal signaling, cell cycle regulation, and viral transformation. PP2A has been implicated in Ca2+-dependent signaling pathways, but how PP2A is targeted to these pathways is not understood. We have identified two calmodulin (CaM)-binding proteins that form stable complexes with the PP2A A/C heterodimer and may represent a novel family of PP2A B-type subunits. These two proteins, striatin and S/G(2) nuclear autoantigen (SG2NA), are highly related WD40 repeat proteins of previously unknown function and distinct subcellular localizations. Striatin has been reported to associate with the post-synaptic densities of neurons, whereas SG2NA has been reported to be a nuclear protein expressed primarily during the S and G(2) phases of the cell cycle. We show that SG2NA, like striatin, binds to CaM in a Ca2+-dependent manner. in addition to CaM and PP2A, several unidentified proteins stably associate with the striatin-PP2A and SG2NA-PP2A complexes. Thus, one mechanism of targeting and organizing PP2A with components of Ca2+-dependent signaling pathways may be through the molecular scaffolding proteins striatin and SG2NA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available