4.5 Article

Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell

Journal

BIOMEDICAL ENGINEERING ONLINE
Volume 12, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1475-925X-12-64

Keywords

Screen printed electrodes; ECG; Electrode impedance; Electrode potential; Smartware electrodes

Funding

  1. VINNOVA - Sweden's Innovation Agency
  2. NovaMedTech
  3. Linkoping Initiative for Life Science Technologies (LIST)

Ask authors/readers for more resources

Background: ECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance. Methods: The electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution. Results: The results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 k Omega at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier. Conclusion: Our conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available