4.4 Article

On rates of occurrence of geomagnetic reversals

Journal

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
Volume 118, Issue 3-4, Pages 181-193

Publisher

ELSEVIER
DOI: 10.1016/S0031-9201(99)00139-9

Keywords

rates; occurrence; geomagnetic reversals

Ask authors/readers for more resources

The magnetostratigraphic time scale provides a record of the occurrence of geomagnetic reversals. The temporal distribution of reversals may be modelled as the realization of an inhomogeneous renewal process; i.e., one in which the intensity, lambda(t), or reversal rate is a function of time. Variations in reversal rate occurring on time scales of tens of millions of years an believed to reflect changes in core-mantle boundary conditions influencing the structure of core flow and the field produced by the geodynamo. We present a new estimate for reversal rate variations as a function of time using nonparametric adaptive kernel density estimation and discuss the difficulties in making inferences on the basis of such estimates. Using a technique proposed by Hengartner and Stark (1992a; b; 1995), it is possible to compute confidence bounds on the temporal probability density function for geomagnetic reversals. The method allows the computation of a lower bound on the number of modes required by the observations, thus enabling a test of whether bumps are required features of the reversal rate function. Conservative 95% confidence intervals can then be calculated for the temporal location of a single mode or antimode of the probability density function. Using observations from the time interval 0-158 Ma, it is found that the derivative of the rate function must have changed sign at least once. The timing of this sign change is constrained to be between 152.56 and 22.46 Ma the 95% confidence level. Confidence bounds are computed for the reversal rate under the assumption that the observed reversals are a realization of an inhomogenous Poisson or other renewal process with an arbitrary monotonically increasing rate function from the end of the Cretaceous Normal Superchron (CNS) to the present, a zero rate during the CNS, and a monotonically decreasing rate function from M29R at 158 Ma to the onset of the CNS. It is unnecessary to invoke more than one sign change in the derivative of the rare function to fit the observations. There is no incompatibility between our results and a recent assertion that there is an asymmetry in average reversal rate prior to and after the CNS, when the CNS is assumed to be a period of zero reversal rate. Neither can we use our results to reject an alternative hypothesis that rates are essentially constant from 158 to 130 Ma, and from 25 Ma to the present. with an intermediate nonstationary segment. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available