4.8 Article

A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat

Journal

PLANT PHYSIOLOGY
Volume 122, Issue 3, Pages 823-834

Publisher

AMER SOC PLANT PHYSIOLOGISTS
DOI: 10.1104/pp.122.3.823

Keywords

-

Categories

Ask authors/readers for more resources

To determine the transporters responsible for toxic Na+ influx in wheat (Triticum aestivum), root plasma membrane preparations were screened using the planar lipid bilayer technique as an assay for Na+-permeable ion channel activity. The predominant channel in the bilayer was a 44-pS channel that we called the nonselective cation (NSC) channel, which was nonselective for monovalent cations and weakly voltage dependent. Single channel characteristics of the NSC channel were compared with Na-22(+) influx into excised root segments. Na+ influx through the NSC channel resembled Na-22(+) influx in its partial sensitivity to inhibition by Ca2+, Mg2+, and Gd3+, and its insensitivity to all other inhibitors tested (tetraethylammonium, quinine, Cs+, tetrodotoxin, verapamil, amiloride, and flufenamate). Na+ influx through the NSC channel also closely resembled an instantaneous current in wheat root protoplasts (S.D. Tyerman, M. Skerrett, A. Garill, G. P. Findlay, R. Leigh [1997] J Exp hot 48: 459-480) in its permeability sequence, selectivity for K+ over Na+ (approximately 1.25), insensitivity to tetraethylammonium, voltage independence, and partial sensitivity to Ca2+. Comparison of tissue, protoplast (S.D. Tyerman, M. Skerrett, A. Garill, G. P. Findlay, R. Leigh [1997] J Exp Bot 48: 459-480), and single-channel data indicate that toxic Na+ influx is catalyzed by a single transporter, and this is likely to be the NSC channel identified in planar lipid bilayers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available