4.6 Article

The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage

Publisher

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-000-0007-4

Keywords

-

Ask authors/readers for more resources

The cleavage resistance of two microalloyed steels (steels A and B) was studied using several tests, including the instrumented precracked Charpy and Charpy V-notch (CVN) techniques. Ductile-to-brittle transition temperatures were measured for the base-metal and simulated heat-affected zone (HAZ) microstructures. Steel B showed inferior cleavage resistance to steel A, and this could not be explained by differences in gross microstructure. Scanning electron fractography revealed that TiN inclusions were responsible for cleavage initiation in steel B. These inclusions were well bonded to the ferritic matrix. It is believed that a strong inclusion-matrix bond is a key factor in why TiN inclusions are potent cleavage initiators in steel. Strong bonding allows high stresses in a crack/notch-tip plastic zone to act on the inclusions without debonding the interface. Once an inclusion cleaves, the strong bond allows for transfer of the TiN crack into the ferritic matrix. It was estimated that only 0.0016 wt pet Ti was tied up in the offending inclusions in steel B. This indicates that extended times at high temperatures during the casting of such steels could produce TiN-related toughness deterioration at even modest Ti contents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available